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A B S T R A C T

VARS-TOOL is a software toolbox for sensitivity and uncertainty analysis. Developed primarily around the
“Variogram Analysis of Response Surfaces” framework, VARS-TOOL adopts a multi-method approach that enables
simultaneous generation of a range of sensitivity indices, including ones based on derivative, variance, and
variogram concepts, from a single sample. Other special features of VARS-TOOL include (1) novel tools for time-
varying and time-aggregate sensitivity analysis of dynamical systems models, (2) highly efficient sampling
techniques, such as Progressive Latin Hypercube Sampling (PLHS), that maximize robustness and rapid con-
vergence to stable sensitivity estimates, (3) factor grouping for dealing with high-dimensional problems, (4)
visualization for monitoring stability and convergence, (5) model emulation for handling model crashes, and (6)
an interface that allows working with any model in any programming language and operating system. As a test
bed for training and research, VARS-TOOL provides a set of mathematical test functions and the (dynamical)
HBV-SASK hydrologic model.

Software availability

The VARS-TOOL software package as well as the HBV-SASK hy-
drologic model and its case studies can be downloaded from www.vars-
tool.com and be used free of charge for non-commercial purposes.

1. Introduction

Earth and environmental systems models are widely employed for
the simulation of complex physical processes that comprise the Earth's
natural and engineered systems (Bennett et al., 2013; Yassin et al.,
2017). They have become essential tools for management and decision
making under uncertainty and non-stationarity, by providing the cap-
ability of prediction and support for scenario analysis regarding the
quality and quantity of future Earth's resources (Kwakkel et al., 2016;
Maier et al., 2016). These models continue to grow in complexity with
our ever-growing understanding of underlying system processes, their
heterogeneity, and feedback mechanisms (Razavi et al., 2012; Tetzlaff
et al., 2008). This growth in complexity (and presumably model fide-
lity) has, however, resulted in large, computationally intensive models
with many (sometimes hundreds of) “uncertain” parameters and factors

whose effects on model behavior need to be characterized and under-
stood (Kaizer et al., 2015; Oreskes, 2003; Razavi, 2017).

The pressing need to characterize how uncertainty in model para-
meters translates into uncertainty in model predictions has spawned
development of a range of methods and tools for uncertainty analysis,
rooted in probability theory. In most cases, these methods are based on
the two traditional, forward- and inverse-problem approaches. The
former propagates assumptions regarding uncertainties in system inputs
or other properties (such as parameters and/or system structure)
through the model to obtain some understanding regarding un-
certainties in the model predictions (e.g., Hong et al., 2006; Kunstmann
et al., 2002). Conversely, the latter uses the information contained in
the mismatch between model predictions and data to help identify
“good” values for the model parameters, and to characterize their as-
sociated posterior uncertainty (e.g., Beven and Binley, 1992; Smith and
Marshall, 2008; Vrugt et al., 2003). A third, complementary approach
that has gained momentum in recent years is one based on the para-
digm of “sensitivity analysis” (SA), which seeks to illuminate the con-
trols on model behavior, thereby characterizing the dominant controls
on predictive uncertainty (Razavi and Gupta, 2015).

A fundamental basis for SA is an effect called the “Sparsity of
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Factors” principle. This principle, which originates from the field of
Statistical Design of Experiments, states that the behavior of a process
involving several variables is likely to be driven primarily by a small
subset of these variables (Box and Meyer, 1986). In SA, where one aims
to attribute the uncertainty in a model prediction to the uncertainties
associated with different factors, we seek to answer the critical ques-
tion: when does uncertainty matter? Imagine, for example, that SA could
tell you the following about two parameters of a model: (i) parameter A
is highly uncertain but does not strongly influence the uncertainty in
model prediction, and (ii) parameter B is relatively certain while
strongly influences (and can therefore cause substantial uncertainty in)
the model prediction. It is clear that uncertainty with regards to para-
meter B, albeit small, is a dominant control of uncertainty in the pro-
blem at hand, whereas the large uncertainty in parameter A does not
matter much. Such a characterization of uncertainty sources and their
impacts is invaluable in guiding research towards reducing the un-
certainties that matter, as it may point to the most important aspects of
the problem at hand.

Early developments in SA were largely based on the notion of “local
sensitivity”, which derives point-based sensitivity measures specified
locally around a nominal point in the problem space (Razavi and Gupta,
2015). This traditional practice, commonly referred to as “local sensi-
tivity analysis” (LSA), is known to be incomplete and potentially mis-
leading (Saltelli and Annoni, 2010), and has therefore evolved into a
more advanced paradigm known as “global sensitivity analysis” (GSA)
(Saltelli et al., 2008). GSA can be defined as a systems theoretic ap-
proach to characterizing the overall (average) sensitivity of one or more
model responses across the factor space, by attributing the variability of
those responses, to different controlling (but uncertain) factors (e.g.,
model parameters, forcings, and boundary and initial conditions). GSA,
and SA in general, has a variety of applications, as outlined in Razavi
and Gupta (2015), including:

• Uncertainty Apportionment: Attribution of total uncertainty in
model responses to different factors (uncertainty sources) to identify
where best to focus efforts for improved factor characterization so as
to reduce the total uncertainty (e.g., Chu-Agor et al., 2011).

• Diagnostic Testing: Assessment of similarities between the func-
tioning of the model and the underlying real-world system, so as to
assess the fidelity of the model structure, conceptualization, and
parameterization (e.g., Haghnegahdar et al., 2017).

• Factor Prioritization and Function: Identification of the factors
that are more influential and contribute most significantly to
variability and other characteristics of model response, and to un-
derstanding their role and function (e.g., Muleta and Nicklow,
2005).

• Factor and Model Reduction: Identification of non-influential
factors and/or insensitive (possibly redundant) components of
model structure and parametrization so that they can be constrained
or removed to simplify the model/analysis (e.g., Touzani and Busby,
2014).

Here, we introduce a GSA toolbox, called VARS-TOOL, which in-
cludes a unique collection of state-of-the-art algorithms and tools for
any of the applications outlined above, and beyond. The toolbox was
designed to address the needs of any user (beginner to advanced) with
any level of background knowledge of GSA and computer program-
ming. It has been developed to improve upon existing software pro-
grams for GSA such as PSUADE (Gan et al., 2014), SAFE (Pianosi et al.,
2015), DAKOTA (Adams et al., 2009), SimLab (JRC, 2008), and UQLab
(Marelli and Sudret, 2014); Section 2 provides an overview of such
improvements and the unique features of VARS-TOOL. Central to the
development of VARS-TOOL is attention to ease of use and interpret-
ability. While VARS-TOOL was originally developed using MATLAB, it
has now also been written in C++ and built into the OSTRICH Soft-
ware Toolkit that provides a model-independent interface for

connecting VARS-TOOL with any simulation model (Matott, 2017).
Being under continuous development, new capabilities, features and
implementations in other computer programming languages are forth-
coming. A well-designed Users’ Manual provides detailed descriptions
of the different functions within VARS-TOOL, along with relevant step-
by-step examples. Our ultimate goal is to promote best practices in GSA
applications within the Earth and environmental systems modelling
community and beyond.

2. Why VARS-TOOL?

VARS-TOOL is a comprehensive, multi-approach, multi-algorithm
toolbox equipped with a set of tools to enable GSA for any application,
with a primary focus on dynamical Earth and environmental systems
models. It is developed around the VARS (Variogram Analysis of
Response Surfaces) theory and methodology, which provides a general
framework that utilizes directional variogram and covariogram func-
tions to characterize “global sensitivity”, thereby providing a compre-
hensive set of global sensitivity indices with minimal computational
cost (Razavi and Gupta, 2016a). VARS was developed to address two
major challenges associated with GSA, as outlined in Razavi and Gupta
(2015):

→ Ambiguous Definition of Global Sensitivity: different GSA methods
are based in different philosophies and theoretical definitions of
sensitivity, leading to different, even conflicting, assessments of the
underlying sensitivities for a given problem.

→ Computational Cost: the cost of carrying out GSA can be large, even
excessive, for high-dimensional problems and/or computationally
intensive models, where cost (or “efficiency”) is commonly assessed
in terms of the number of required model runs.

The VARS approach can be seen as a “unifying theory” for GSA that
places the different GSA theories and methods available in the literature
on a common foundation. We say so because it re-defines GSA by
characterizing a comprehensive spectrum of information about the
underlying sensitivities of a response surface to its factors, including:

(1) local sensitivities, i.e., the partial derivatives of model responses
with respect to different factors, and their global distributions
across the factor space,

(2) the global distribution of model direct responses and the change in
that distribution as a result of fixing one or groups of factors at
different values within their uncertainty ranges, and

(3) the form and covariance structure of the response surface along the
directions of different factors in the factor space.

The information types provided in points 1 and 2 above are, re-
spectively, the bases for derivative-based methods such as elementary
effects (Morris, 1991) and its extensions (Campolongo et al., 2007;
Rakovec et al., 2014; Sobol’ and Kucherenko, 2009) and direct-re-
sponse-based methods such as Sobol’ variance-based (Sobol, 2001),
higher-order moment-based (skewness, kurtosis; Dell’Oca et al. (2017)),
and general distribution form-based (Pianosi and Wagener, 2015)
methods. VARS bridges these two philosophically different families of
methods and further complements those with the information type
provided in point 3 above; an information type that is unique to VARS.

Accordingly, VARS introduces a novel and general “variogram-
based” paradigm for GSA that unifies and encompasses the pre-existing,
widely used derivative-based (Morris, 1991) and variance-based (Sobol,
2001) approaches and their extensions as special/limiting cases. The
theoretical relationship between VARS and the derivative/variance-
based approaches, established in Razavi and Gupta (2016a), enables
VARS to simultaneously generate both Morris and Sobol’ sensitivity
indices (including elementary effects and total-order effects) along with
the recommended VARS-based “IVARS” indices, using a single
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(common) set of sample points. In addition, VARS tackles the issue of
“sensitivity” of the sensitivity analysis results to perturbation scale (scale
issue in GSA) by providing sensitivity information spanning a range of
scales across the factor space, from small-scale features such as
roughness/noise to large-scale features such as multimodality
(Haghnegahdar and Razavi, 2017; Razavi and Gupta, 2015).

A defining feature of VARS is its high efficiency and statistical ro-
bustness, enabling reliable and stable results with 1–2 orders of mag-
nitude fewer sample points (model runs) than are required by alter-
native approaches, such as the derivative- and variance-based
counterparts (Razavi and Gupta, 2016b). This computational efficiency
is, in part, due to VARS being based on the information contained in
pairs of points, rather than in individual points. As a result, VARS can be
used to effectively and efficiently handle high-dimensional problems. This
feature is important because, in practice, computational cost is a major
reason why most applications of GSA (and of uncertainty analysis in
general) have been limited to low-dimensional, simple (cheap-to-run)
models. This is also related to the curse of dimensionality in which, as
the problem dimension (e.g., number of parameters) grows, the volume
of the problem space increases so rapidly (exponentially) that the
available sample density becomes too sparse to be able to properly
characterize the problem space; as such, the size of the sample required
(i.e., number of model runs) for a stable, robust, and statistically sound
assessment typically grows exponentially with dimension. The recent
survey by Sheikholeslami et al. (2018) finds that ∼70 percent of GSA
applications in the environmental modelling literature have focused on
models with less than 20 parameters, which falls well below the num-
bers of factors that comprise complex, state-of-the-art models. This may
be seen as paradoxical to the underlying goal of GSA, which is to fa-
cilitate understanding of the behaviors of complex models, nowadays
involving tens to hundreds (or more) of factors.

In addition to providing the first software implementation of the
VARS methodology, VARS-TOOL includes a range of other algorithms
and software tools, as listed in Table 1 and described below (the list is
continually being updated). Notably, VARS-TOOL includes:

(a) A suite of GSA algorithms in addition to VARS. This feature enables
the users to use an algorithm that they are most comfortable with
and/or to compare the performance and results of different algo-
rithms together and with those provided by VARS (Razavi and
Gupta, 2016a, 2016b).

(b) A suite of sampling strategies. A particularly important feature is
the implementation of Progressive Latin Hypercube Sampling
(PLHS), which enables the progressive generation of additional
sample points in the factor space, while continuing to preserve the
distributional properties of interest (Sheikholeslami and Razavi,
2017).

(c) Novel tools for assessing the time-varying nature of sensitivities of
dynamic systems models. This capability enables the user to com-
pute “time-varying” and “time-aggregate” sensitivity indices of
model state and output variables through the Generalized Global
Sensitivity Matrix (GGSM) approach (Gupta and Razavi, 2018;
Razavi and Gupta, in review).

(d) A strategy for “factor grouping” based on their importance and
function. This feature enables classification of factors into groups,
which greatly facilitates the analysis of problems that are of very
high-dimension (having large numbers of factors (Sheikholeslami
et al., 2018)).

(e) A measure of robustness and convergence of sensitivity analysis.
Via statistical bootstrapping, this feature enables estimation of
confidence intervals on sensitivity indices as well as the reliability,
robustness, and convergence of factor ranking or grouping over
time throughout a GSA experiment (Razavi and Gupta, 2016b;
Sheikholeslami et al., 2018).

(f) Model emulation strategies to facilitate “model crash handling”.
This feature maintains the reliability and robustness of a GSA

experiment when the simulation model used fails to return response
values for some sample points in the factor space (Sheikholeslami
et al., in prep.).

Importantly, VARS-TOOL comes with a visualization tool, that can
work in online mode to enable the user to monitor the real-time per-
formance and evolution of a GSA experiment, and to process its inter-
mediate results while assessing stability and convergence. Finally, the
inclusion of several test functions and real-world case studies, including
the HBV-SASK rainfall-runoff model, enables the use of VARS-TOOL for
a range of learning, teaching, and research purposes. By incorporating
the aforementioned diversity of tools and features within a single plat-
form, VARS-TOOL is intended to conveniently provide the user with the
ingredients necessary for conducting exploratory research with a view
to discovering new directions for advancing the field of sensitivity and
uncertainty analysis. In the remainder of this paper, we provide details
on the features and tools outlined above.

3. Sensitivity analysis algorithms

VARS-TOOL includes a range of well-known “model-free” (or
“model-independent”) GSA algorithms that work with any model of any
degree of complexity. These algorithms are based on derivative- and
variance-based approaches that are commonly used and reported in the
literature, and the recently developed, more general variogram-based
approach that bridges across the aforementioned two approaches. A
brief description of the algorithms is given below, and details regarding
their numerical implementation (sampling strategies and computa-
tional costs) are provided in Section 5.

The derivative-based approach: This approach is a natural exten-
sion to local sensitivity analysis wherein the partial derivatives of a
model response with respect to different model inputs at one base point
are computed numerically and interpreted as indices of local sensitivity.
The associated algorithm (see Table 1) generates “globally aggregated
measures of local sensitivities” by computing the partial derivatives
(called “elementary effects” by Morris, 1991) at many sample points
and combining them together in “some” way (e.g., by taking the mean
and/or standard deviation) to generate indices for global sensitivity.
Each index is different in the way that it characterizes the distributional
properties of partial derivatives (for details, see Razavi and Gupta
(2015)). The VARS-TOOL function “main_Morris.m” implements the
algorithm and computes different variations of elementary effects-
based sensitivity indices proposed by Morris (1991), Campolongo et al.
(2007), and Sobol’ and Kucherenko (2009). The user is required to
select a step size for numerical approximation of the partial derivatives,
which is typically recommended (arbitrarily) to be 1–10% of the input
range.

The variance-based approach: This approach is based on analysis
and decomposition of the variance of model response, so as to interpret
the contribution of different factors in explaining this variance as an
index for global sensitivity. The VARS-TOOL function “main_Sobol.m”
(Fig. 1) implements the algorithm of Saltelli et al. (2008) to decompose
the total variance of model response (when all the factors are varied
within user-selected ranges) into its components arising from individual
inputs and their interactions. Algorithm outputs include the “main ef-
fects” associated with individual factors (discarding the role of possible
interactions with any other factors), and the “total-order effects” that
combine the contribution of individual factors and all higher-order
interactions with other factors. Typically, the total-order effect is con-
sidered to be an effective index for global factor sensitivity.

The variogram-based approach: This approach is based on
Variogram Analysis of Response Surfaces (VARS) that provides a gen-
eral, comprehensive framework that unifies and extends upon both the
derivative- and variance-based approaches. VARS was specifically de-
veloped to address a major weakness of the aforementioned ap-
proaches, which is that neither considers or accounts for the spatially
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ordered structure of the model response in the factor space. In other
words, they ignore the fact that the response values are not randomly
distributed throughout the factor space. Conversely, VARS recognizes
that there is a spatially continuous covariance structure to the model re-
sponse, and hence also to its partial derivatives. To extract and analyze
this structural information, VARS uses anisotropic variogram and cov-
ariogram functions of the model response to generate “directional
variograms” associated with each of the model factors as a basis for a
comprehensive characterization of global sensitivity.

The directional variogram represents the variance (i.e., rate of
variability) of the response caused by perturbing that factor across a full
range of “perturbation scales”, while all other factors are also varied in
the factor space. Fig. 2 shows schematic directional variogram and
covariogram functions and how they relate to derivative- and variance-

based approaches. By definition, the left end point of a variogram
(where the perturbation scale, h, is small) represents derivative in-
formation of the underlying process, while its right end point (where h
is large) represents the process variance; the variance-based total-order
effect can be estimated via mathematical manipulation of the vario-
gram and covariogram functions. For the detailed analytical relation-
ships between the variogram-, derivative-, and variance-based theories,
see Razavi and Gupta (2016a). The sensitivity indices in VARS are
computed by integrating the directional variograms, resulting in a
comprehensive set of indices for global sensitivity called “Integrated
Variograms Across a Range of Scales” or IVARS. The IVARS50 index,
also referred to as the “total-variogram effect”, that integrates the
variogram across the full range of perturbation scales is the most
comprehensive variogram-based index for global sensitivity.

Fig. 1. A screenshot of main_Sobol.m function in VARS-TOOL.

or

Derivative-Based Approach Variance-based Approach

Variogram

Covariogram

Summary Derivations:

If

If

“Elementary Effects” based
Metrics of Morris

Variance of Response Surface

“Total-Order Effects” of Sobol’

Fig. 2. Using the directional (anisotropic) variogram (γ) and covariogram (C) concepts, the variogram-based approach provides a general, unifying theory that
bridges across the derivative- and variance-based approaches. is the set of factors, i is the ith factor, and i is the set of all factors excluding the ith factor; Z and hi
represent model response and perturbation scale, respectively. Note that the relationship between the total-order effect and the variogram and covariogram functions
holds for any hi, under the constant mean assumption; this assumption tends to be more accurate for smaller hi, and therefore, VARS estimates Si

TO (also referred to as
VARS-TO) based on the smallest numerical hi.
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A specific implementation of VARS, called STAR-VARS, is in-
corporated within VARS-TOOL. This implementation utilizes a form of
star-based sampling (called STAR), developed by Razavi and Gupta
(2016b). The VARS-TOOL function “main_VARS.m” computes the
IVARS indices for global sensitivity along with the aforementioned
derivative- and variance-based indices, all together in a single run that
utilizes the same sample points. Therefore, this function is a multi-
method platform that provides the user with a sensitivity assessment
that simultaneously includes the derivative-, variance-, and variogram-
based indices. Fig. 3 shows an example input text file to this function,
where the user can provide the specifications of model, factor ranges,
algorithm parameters, etc. The text-file-based interface with this func-
tion was designed for ease of use.

To be comprehensive, VARS-TOOL also includes an implementation
of the so-called “Regional Sensitivity Analysis” (RSA) approach, that is
essentially Monte-Carlo filtering (Hamby, 1994; Spear et al., 1994). The
heuristic RSA approach is commonly used to partition the marginal
distribution of sample points obtained for each factor into two (or
more) distributions based on empirically selected threshold values for
model response. The idea is that if the factor does not have a significant
impact on model response throughout the factor space, the two dis-
tributions should be statistically indistinguishable. The VARS-TOOL
function “main_RSA.m” implements this approach and utilizes the
Smirnov test to quantify the extent to which the two distributions are
different, thereby providing indices for global sensitivity.

Other classic “model-based” GSA approaches such as factorial de-
sign-, correlation-, and regression-based approaches are not included in
VARS-TOOL, because of their limited utility in the design and analysis
of computer-based simulation experiments. These approaches are gen-
erally unsuitable for sensitivity analysis of complex dynamical systems
models as they are based in the a priori assumption of a particular
mathematical form (typically linear or polynomial) for the underlying
model response surface. In addition, these methods are particularly
prone to curse of dimensionality (see discussion in Razavi and Gupta
(2015)).

4. Sensitivity analysis of dynamical systems models

Most approaches to global sensitivity analysis (GSA) do not ade-
quately account for the dynamical nature of Earth and environmental
systems models; the fact that such models, in real-world applications,
produce dynamical time-evolving responses to dynamical time-evolving
perturbations/inputs. Gupta and Razavi (2018) highlighted this fact,

revisited the fundamental basis of GSA for dynamical systems models,
and developed a sensitivity analysis framework from first principles
based on computation of a “Global Sensitivity Matrix” (GSM) that
quantifies the sensitivity information contained in trajectories of partial
derivatives of the dynamical model responses with respect to control-
ling factors. Razavi and Gupta (in review) extended and generalized
this approach to accommodate (a) any GSA philosophy including de-
rivative-, variance-, and variogram-based approaches and (b) any
model response of any type including time series of model state or
output variables and their transformations; this approach is referred to
as “Generalized Global Sensitivity Matrix” (GGSM).

VARS-TOOL includes an efficient implementation of the GGSM ap-
proach coupled with STAR-VARS that enables a multi-method GSA of
dynamical systems models that accounts for the temporal dynamics of
such models while enabling efficient comparison of the results provided
by philosophically different approaches (e.g., derivative-based versus
variance-based). This implementation generates the following types of
indices of global sensitivity:

(a) “Time-varying” sensitivity indices: These indices are in the form
of time series that reveal the time-dependent sensitivities of model
responses (over the course of a simulation time period) to its con-
trolling factors.

(b) “Time-aggregate” sensitivity indices: These indices are in the
form of summary statistics that aggregate and summarize the dy-
namical sensitivity information of model responses over one or
multiple time periods of interest.

The time-varying indices enable the user to better understand the
model/system behavior over time, in response to system forcings/
boundary conditions. This capability facilitates: (i) diagnostic testing
and detection of potential defects in different parts of a model, thereby
helping to improve model realism, and (ii) attribution of variability and
therefore uncertainty in the model responses to different factors (model
parameters, forcings, boundary conditions, etc.), thereby helping to
pinpoint the dominant controls of predictive uncertainty at different
points in time. When summary information regarding the time-varying
sensitivities is required, the time-aggregate indices become more useful.

A second defining feature of the GGSM approach is that it does not
require that observed data on system responses be available, and so can
be used to assess the internal functioning of a model and the controls
exerted by different factors of any of its components, including both
states and fluxes. This is important because (1) our interest when

Fig. 3. A screenshot of VARS_inp.txt (main input file), where the algorithm parameters, the files containing the model to run and factor ranges, etc. are specified. The
percent sign (%) at each line denotes that the following information are comments and will not be used by VARS. These specifications can also be directly provided in
the source codes.
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conducting a GSA is not limited to response variables for which ob-
servations are available, and (2) the sensitivity assessments cannot be
obscured or distorted by errors and uncertainties that unavoidably exist
in observed response data (Gupta and Razavi, 2018).

The VARS-TOOL function “main_VARS.m” is enabled with the
GGSM approach, which can be activated by a switch on line 22 of
VARS_inp.txt (Fig. 3) or within the source code. Upon activation, VARS-
TOOL can generate, within a single run (i.e., a single sample set), time-
varying and time-aggregate GSA indices based on the derivative-based
(e.g., Morris elementary effects), variance-based (e.g., Sobol’ total-order
effects), and variogram-based (e.g., VARS total-variogram effects) ap-
proaches. This capability enables a user to explore, compare, and
contrast the assessments provided by these three approaches to GSA.

5. Sampling strategies

Sampling strategies are necessary and fundamental components of
any algorithm for sensitivity and uncertainty analysis of computer si-
mulation models. VARS-TOOL includes a variety of sampling strategies,
as listed in Table 1. The derivative-, variance-, and variogram-based
GSA algorithms outlined above all follow a two-level sampling proce-
dure in the factor space. In the first level, they can employ any of the
general-purpose, randomized sampling strategies listed in Table 1 to select
a set of N “base points” randomly distributed uniformly throughout the
factor space. In the second level, these points are used as starting points
for the algorithm-specific, structured sampling strategies used to acquire
the remaining sample points required for calculating the algorithm-
specific sensitivity indices. VARS-TOOL includes both “single-stage”
and “progressive” (also called “sequential” or “multi-stage”) strategies
for random sampling.

Because single-stage sampling strategies such as Latin hypercube
sampling (LHS; McKay et al., 1979) and symmetric Latin hypercube
sampling (SLHS; Ye et al., 2000) generate an entire sample, consisting
of a pre-specified number of points, all at once, such strategies are ef-
fective only if the user is fairly confident about the proper sample size
before beginning the analysis, as any subsequent enlargement of the
sample size will generally fail to preserve the distributional properties
of interest. In contrast, progressive sampling strategies enable sequen-
tial (or multi-stage) generation of the sample points. Examples include
the traditional Halton and Sobol sequences (also called low-discrepancy
sequences), and the novel method of progressive Latin hypercube
sampling (PLHS) recently developed by Sheikholeslami and Razavi
(2017). Note that VARS-TOOL provides the first available software
implementation of PLHS.

PLHS sequentially generates sample points while progressively
preserving important distributional properties of interest (Latin hy-
percube properties, space-filling, etc.), as the sample size grows. Fig. 4
illustrates how PLHS successively generates a series of smaller sub-
samples (slices) such that (1) the first slice is Latin hypercube, (2) the
progressive union of slices remains Latin hypercube and achieves
maximum stratification in any one-dimensional projection, and as such
(3) the entire sample is Latin hypercube. PLHS has been shown to be a

superior strategy that scales effectively with the size and dimensionality
of the problem under investigation (Sheikholeslami and Razavi, 2017).

Once the set consisting of N base points is generated randomly by
any of the sampling strategies mentioned above, it is used by the
structured sampling strategies as starting points for the generation of
the remaining sample points. In the derivative-based approach
(Campolongo et al., 2007; Morris, 1991), each of the N base points
serves as the starting point for a chain of points constructed by chan-
ging one factor at a time (by a given step size), resulting in a total
number of N(D+1) sample points, where D is the number of factors. In
the variance-based approach (Saltelli et al., 2008), structured sampling
is conducted via matrix manipulation of the base sample matrix (con-
sisting of the N base points), resulting in a total number of N(D+2)
sample points. In the variogram-based approach, and particularly in the
STAR-VARS implementation, the N base points are used as “star centers”
for STAR sampling (Razavi and Gupta, (2016b)). In this approach,
equally spaced points are sampled (Δh apart) around each star center
along every dimension of the factor space (Fig. 5), resulting in a total
number of N(D(1/Δh-1)+1) sample points. The distance Δh, referred to
as the “resolution” of sampling, is specified by the user; a Δh of 0.1 of the
factor range is recommended, while smaller values can be selected to
yield more accurate results.

6. Dealing with high-dimensional problems: factor grouping

The challenge of conducting a GSA, monitoring its convergence and
robustness, and interpreting the associated results can easily become
non-trivial when the problem has more than ∼20–30 factors.

θ1

θ2

θ1

θ2

θ1

θ2

(a) Slice 1                                            (b) Slice 1 + Slice 2                            (c) Slice 1 + Slice 2 + Slice 3 Fig. 4. Illustration of Progressive Latin Hypercube
Sampling (PLHS) on a 2-dimensional factor space
with 3 slices and a slice size of 4. (a) Sample points of
slice 1, ensuring every one-fourth of space at each
direction receives one point. (b) Sample points of slice
2 added to those of slice 1, ensuring every one-eighth
of space at each direction receives one point. (b)
Sample points of slice 3 added to those of slice 1 and
slice 2, ensuring every one-twelfth of space at each
direction receives one point. Points of slices 1, 2, and
3 are in blue, red, and green, respectively.

Fig. 5. Illustration of the STAR sampling strategy with N=2 (number of star
centers or base points), D= 3 (number of factors), and Δh=0.1 of factor range.
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Therefore, VARS-TOOL includes an innovative “factor grouping”
strategy that employs a clustering mechanism developed by
Sheikholeslami et al. (2018) to handle high-dimensional problems, in-
volving tens to hundreds of factors. This strategy, integrated together
with bootstrapping (see Section 7.1), monitors GSA performance and
clusters factors into groups of similar properties based on their sensi-
tivity and function. The resulting groups can be of any size, depending
on the problem at hand.

For example, in a problem with 60 factors, VARS-TOOL can be used
to cluster the factors into 5 groups of factors termed “strongly influ-
ential”, “influential”, “moderately influential”, “weakly influential”,
and “non-influential”. The number of groups of interest can be directly
specified by the user in VARS_inp.txt; as a convenient feature, however,
if the user does not specify a preferred number of groups, VARS-TOOL
will suggest an “optimal” number of groups, based on maximizing the
distinctions between the groups through the so-called “elbow method”
(Sheikholeslami et al., 2018). Fig. 6 shows an example dendrogram
generated by VARS-TOOL and the associated optimal grouping.

This grouping capability is particularly beneficial when dealing with
high-dimensional problems, where the user typically does not need to
obtain an exact ranking for the many factors. For example, in a problem
with 100 factors, it may not matter whether a factor is the 30th or the
31st in terms of importance, and obtaining a robust answer to this
question may require running the model an excessively large number of
times. Instead, by assigning factors having similar importance into
groups, VARS-TOOL provides a means for making the problem more
tractable within a limited number of model runs.

This capability scales the computational demand of a GSA algorithm
with the users’ need in terms of precision in factor rankings, and as
such, results in significant improvements in stability and rate of con-
vergence.

7. Other important features of VARS-TOOL

7.1. Bootstrapping: Characterizing confidence and robustness

In any analysis based on statistical sampling, it is essential to be able
to assess the degree of confidence one can place in the results, so as to
get a sense of reliability, robustness, and sufficiency of the analysis. In
VARS-TOOL, the method of statistical bootstrapping is used to (1) infer
confidence intervals around the estimates of sensitivity indices at any
user-specified confidence level, and (2) provide an assessment of the

“robustness” that can be associated with the factor rankings. While the
use of bootstrapping for the former is common in GSA literature, in the
latter, the definition and implementation of robustness (sometimes
termed “reliability” as well) of a factor ranking, developed by Razavi
and Gupta (2016b) and further extended by Sheikholeslami et al.
(2018) for groups of factors, is unique to VARS-TOOL.

Consider, for example, a problem with five factors. After 200 model
runs (sample size= 200), one may find that the sensitivity index as-
sociated with factor 3 has been estimated to have a value of 0.4, but
with a confidence interval of [0.3–0.45] at the 90% confidence level.
Meanwhile, its factor ranking may be estimated as 2 (meaning that it is
the second most influential of the 5 factors) with an assessed robustness
of 70% (meaning that factor 3 is exactly rank 2 with 70% probability).
With larger sample sizes, we can expect that confidence intervals will
become progressively narrower and the robustness estimates progres-
sively improve, thereby increasing our confidence in the results of the
statistical analysis. Note that the reason that we will typically not have
100% confidence in the results is that the analysis can be affected by
“sampling variability” in the generation of the sample points used, and
so can provide somewhat different results if the experiment is re-run
with a different (but equally representative) set of samples.

However, increasing the sample size can help to improve the re-
liability and robustness of the analysis. So, for example, increasing the
sample size to 500 in the example above could alter the sensitivity
index of factor 3 to have a value of 0.38 with a 90% confidence interval
of [0.35–0.41], and a factor ranking of 2 but with an increased ro-
bustness of 90%. In this way, statistical bootstrapping provides a way of
assessing the robustness, stability, and convergence of a GSA experi-
ment, with narrower 90% (or 95% etc.) confidence intervals and higher
factor ranking robustness indicating greater reliability of the results.

As a caveat, note that statistical bootstrapping (Efron, 1992) is a
procedure based in sampling with replacement from the existing set of
sample points to obtain estimates of the underlying statistical properties
of a sample, and so its validity depends on the assumption that the
existing sample is a sufficiently representative sample of the underlying
population ( Beran, 1997; Davison et al., 2003). In practice, this means
that the sample size used for the analysis must be large enough to
adequately span the factor space of interest. One way to assess this is to
repeat the analysis with progressively larger sample sizes, which is
easily facilitated by the PLHS method of progressive sampling discussed
in Section 5.

ytirali
missiD

Factor

Fig. 6. An example dendrogram for factor grouping
generated by VARS-TOOL for the HBV-SASK hydro-
logic model on the Banff River Basin (see Section 9).
This grouping is based on the sensitivity of mean-
squared-errors performance metric on log-trans-
formed simulated and observed streamflows over the
historical record to the 12 model parameters. The
parameters are sorted from the most influential (to
the left) to the least influential (to the right), and
colored groups of parameters correspond to the op-
timal grouping obtained by the elbow method.
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7.2. Reporting and visualization: Monitoring stability and convergence

VARS-TOOL provides an “on-line” visualization and reporting cap-
ability that enables monitoring the execution of GSA experiments and
evaluation of their intermediate/progressive performance. Fig. 7 shows
example plots generated using VARS-TOOL for the Razavi-Gupta's “6D
multi-scale wavy function”, developed in Razavi and Gupta (2016a), in
on-line mode. These plots enable the user to monitor how the estimates
of factor sensitivities and rankings may be changing with increasing
sample size (as more model evaluations become available).

Along with comprehensive, frequently generated report files (pro-
vided in text format) in the course of a GSA experiment, these plots
provide the capability to visually monitor robustness, stability, and
convergence, and terminate an analysis when required. Furthermore,
this capability in conjunction with a sequential sampling strategy (e.g.,
PLHS) can resolve the problem that a user will typically not know a
priori what a suitable sample size may be for a GSA experiment. As a
result, the GSA can run only for an optimal number of model runs,
thereby maximizing computational efficiency.

7.3. Model emulation: Handling model crashes

An issue that is known to arise when running some complex Earth
and environmental systems models is that they may fail, while running,
under particular factor configurations and values. Such failures (often
called “crashes”) can, for example, be caused by specifying unrealistic
combinations for the parameter values that violate model assumptions,
or by numerical instabilities that arise under some combinations of
parameters and forcings.

In practice, if the occurrence of such model failures is not properly
dealt with, the entire GSA experiment can fail. Most implementations of
GSA algorithms require that meaningful model responses be provided
for every sample point generated. However, execution of the model
code may fail to return a response if it crashes. When this happens,
modellers often end up re-doing the entire analysis with more con-
servative (tighter) factor ranges, resulting in extra computational cost
(model runs) and also changing the definition of the original problem.

To address this issue effectively and efficiently, VARS-TOOL is en-
abled with a “crash-handling module” that is designed to complete the
GSA while minimizing the impact of model crashes on the analysis. For
this purpose, VARS-TOOL employs model emulation techniques (Razavi
et al., 2012) to generate surrogate values of model outputs when a

model fails. Theoretical details of this module are available in
Sheikholeslami et al. (in prep.).

7.4. Running with models implemented in any programming language and
operating system

VARS-TOOL programs, both the MATLAB version and C++ version
implemented within OSTRICH, have the capability to work with any
model implemented in any programming language and running on any
operating system. VARS-TOOL has two modes for execution:

• On-line (internal): This mode can be used when the computer si-
mulation model is set up to be called and run through the MATLAB
or OSTRICH environments.

• Off-line (external): This mode is to be used when the computer
simulation model needs to be run externally, outside the MATLAB or
OSTRICH environments.

In the off-line mode, the model simulations can be performed in-
dependently of the VARS-TOOL software programs. In this mode, (1)
VARS-TOOL first generates the locations for all the sample points re-
quired for the analysis and stores them in a text file. (2) Then the user
should conduct model simulations externally for all of the sampled
points and store the respective model response values (e.g., in a text
file). These runs can be parallelized if multiple processors are available.
(3) VARS-TOOL reads in the model runs results, conducts the analysis,
and generates sensitivity indices. Importantly, the VARS-TOOL version
within OSTRICH supports Message Passing Interface (MPI)-based par-
allel processing on both Windows and Linux systems, which can sig-
nificantly increase computational efficiency of a GSA experiment by
parallelizing model runs.

8. Test functions

Test functions are useful for learning, understanding, testing, and
benchmarking the performance of different GSA algorithms. They have
the advantage that (1) they are computationally inexpensive and fast-
to-run and (2) their characteristics are known a priori, and in most
cases, controllable by the user.

VARS-TOOL embeds a diverse set of test functions, demonstrating a
wide range of possible characteristics such as nonlinearity, unimodality
and multi-modality, irregularity, roughness and smoothness,
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interaction, and high-dimensionality. These test functions provide “ar-
tificial” response surfaces (also called landscapes) that may share some
characteristics with the response surfaces of real-world modelling
problems; for a discussion of the latter see Duan et al. (1992).

In addition to including test functions designed originally for re-
search on sensitivity and uncertainty analysis, VARS-TOOL includes
functions popular in the field of optimization research. The test func-
tions are listed in Table 1, and the response surfaces for two of them (G-
function and 6D multi-scale wavy function) are shown in Fig. 8. When
choosing a test function for a particular analysis, users might first
consider which test function presents similar structure and character-
istics to those of the underlying response surface of the problem at

hand. This question is non-trivial, but Razavi and Gupta (2015) provide
some insight.

9. Hydrologic case studies

VARS-TOOL includes software of a hydrologic model called HBV-
SASK, which is an interpretation of Hydrologiska Byråns
Vattenbalansavdelning model (Lindström et al., 1997), developed by
the first author for educational and research purposes. Fig. 9 shows the
architecture of HBV-SASK and its inputs, process parameters, and
equations. In addition to those process parametrizations, daily potential
evapotranspiration (PET) is computed using equation PET = (1 + ETF
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* ( T – Tmth)).* PETmth, where Tmth and PETmth are long-term average
monthly temperature and potential evapotranspiration, respectively,
supplied as input data to the model along with daily precipitation (P)
and temperature (T). Table 2 lists the model parameters (including ETF
in the equation above), their description, and feasible ranges. The im-
plementation is modular, with each module simulating a different hy-
drologic process, thereby allowing the user to easily investigate the
different model flux and state variables (see Fig. 10).

HBV-SASK in VARS-TOOL comes with “ready-to-run” case studies
for two watersheds, Bow River (at Banff with area of 2178.53 km2) and
Oldman River (at Waldron's Corner with an area of 1434.73 km2).
These rivers are located in the Rocky Mountains in Alberta, Canada, and
flow into the Saskatchewan River Basin (Fig. 11). Historical data is
available for the periods 1950–2011 and 1979–2008 respectively, from
which we estimate average annual precipitation (rainfall + snowfall) to
be 795 mm (Bow) and 611 mm (Oldman), and average annual
streamflow to be 38.6 m3/s at gauge 05BB001 on the Bow River, and
11.7m3/s at gauge 05AA023 on the Oldman River. The Bow and
Oldman basins differ in their hydrological properties and have runoff
ratios of approximately 0.7 and 0.42, respectively.

VARS-TOOL also comes with a ready-to-use set-up of the MESH
(Modélisation Environmentale communautaire – Surface & Hydrology)
land surface-hydrology model (Pietroniro et al., 2006). MESH couples
the Canadian Land Surface Scheme (CLASS) (Verseghy et al., 1993;
Verseghy, 1991) with the hydrologic routing schemes of WATFLOOD
(Kouwen et al., 1993). This model set-up is interfaced with VARS-TOOL
via the OSTRICH toolkit (Matott, 2017). The case studies with MESH
are adopted from Haghnegahdar et al. (2017). Details on how to run
this case study are available in the VARS-TOOL manual.

10. Concluding remarks

Significant theoretical and practical advances have been made in
recent years in the field of sensitivity and uncertainty analyses. These
analyses need to become an integral part of any model development,
prediction, and decision-making process, providing insight into various
issues such as uncertainty apportionment, diagnostic testing, planning
and management, and policy prioritization. Best practices are, however,
often hampered by computational burden and lack of transparency and
interpretability. VARS-TOOL is designed as a computationally-efficient

Table 2
The parameters of the HBV-SASK hydrologic model.

Number Parameter Name Lower Bound Upper Bound Description

1 TT −4 4 Air temperature threshold in °C for melting/freezing and separating rain and snow
2 C0 0 10 Base melt factor, in mm/°C per day
3 ETF 0 1 Temperature anomaly correction in 1/°C of potential evapotranspiration
4 LP 0 1 Limit for PET as a multiplier to FC, i.e., soil moisture below which evaporation becomes supply limited
5 FC 50 500 Field capacity of soil, in mm. The maximum amount of water that the soil can retain
6 β (beta) 1 3 Shape parameter (exponent) for soil release equation (unitless)
7 FRAC 0.1 0.9 Fraction of soil release entering fast reservoir (unitless)
8 K1 0.05 1 Fast reservoir coefficient, which determines what proportion of the storage is released per day (unitless)
9 α (alpha) 1 3 Shape parameter (exponent) for fast reservoir equation (unitless)
10 K2 0 0.05 Slow reservoir coefficient which determines what proportion of the storage is released per day (unitless)
11 UBAS 1 3 Base of unit hydrograph for watershed routing in day; default is 1 for small watersheds
12 PM 0.5 2 Precipitation multiplier to address uncertainty in precipitation (unitless); default is 1.

Fig. 10. A screenshot of the modules of the HBV-SASK rainfall-runoff model.
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and transparent platform to reconcile the state-of-the-art theories with
real-world applications that involve complex, high-dimensional, and
computationally expensive models of dynamical systems.

In summary, VARS-TOOL aims to promote best practices in sensi-
tivity analysis that should be based on:

• A multi-method approach that brings together the different theories
and aspects of sensitivity analysis, thereby providing a more com-
prehensive assessment of the problem at hand; using, for example,
the Variogram Analysis of Response Surfaces (VARS) approach (see
Section 3).

• Proper accounting for the dynamical properties of Earth and en-
vironmental systems models; using, for example, the Generalized
Global Sensitivity Matrix (GGSM) approach (see Section 4).

• Proper sampling of the problem space that effectively scales with the
size of the problem at hand and available computational budget;
using, for example, progressive Latin hypercube sampling (PLHS,
see Section 5).

• Methods that are capable of handling high-dimensional problems,
such as advanced Earth and environmental systems models that tend
to involve hundreds of factors whose influence on model response
needs to be characterized; using, for example, a factor-grouping
strategy (see Section 6).

• Proper characterization of “robustness” (and stability) of the algo-
rithms to sampling variability, and of the degree of “confidence” and
“reliability” that users can have in sensitivity results; Using, for
example, a bootstrap technique (see Section 7).

VARS-TOOL is under continuous development to include new the-
oretical advances in the field of sensitivity and uncertainty analysis.
Forthcoming additions will include (but are not limited to):

(a) The ability to carry out sensitivity analysis on any sample data of a
process, however collected (see e.g., Borgonovo et al., 2016). We
believe this ability is needed for two reasons: (i) the utility of sen-
sitivity analysis may not be limited to models and their artifacts,
and one may directly apply sensitivity analysis to data to

characterize the behavior of the underlying system processes; (ii)
most sensitivity analysis algorithms require samples taken in a
specific manner, which limits their utility when a sample
set already exists.

(b) The ability to handle problems with non-uniform and/or correlated
factors (see e.g., Kucherenko et al., 2012). Most algorithms for
sensitivity analysis assume uniform a priori distributions for the
factors. This assumption limits the applicability and validity of re-
sults, if the true distribution of factors is non-uniform and/or cor-
related.

(c) The ability to provide a more informative characterization of “in-
teraction” effects (see e.g., Razavi and Gupta, 2015). Very few ex-
isting approaches to sensitivity analysis can provide a meaningful
and/or easily interpretable assessment of interaction effects. There
is a need to rethink the fundamentals of interaction effects, in re-
lationship with the correlation effects (point b above) and to de-
velop more informative tools for their characterization in support of
model development and prediction.

The field of sensitivity analysis is still young and evolving. It has the
potential to provide a solid foundation based on which different sources
of uncertainty, which may by essence be irreconcilable, can be com-
pared and assessed. Further, it has the potential to help us isolate, as-
sess, and deal with the “deep uncertainties” in our future Earth and
environmental systems that occur in the context of climatic, environ-
mental, and social change. As always, we invite discussion and colla-
boration on any of these and other issues related to diagnostic eva-
luation and improvement of dynamical systems models, especially with
regard to high-dimensional representations of complex systems.
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